When.com Web Search

  1. Ads

    related to: stationary anode x ray tube laser beams size

Search results

  1. Results From The WOW.Com Content Network
  2. X-ray tube - Wikipedia

    en.wikipedia.org/wiki/X-ray_tube

    Solid-anode microfocus X-ray tubes are in principle very similar to the Coolidge tube, but with the important distinction that care has been taken to be able to focus the electron beam into a very small spot on the anode. Many microfocus X-ray sources operate with focus spots in the range 5-20 μm, but in the extreme cases spots smaller than 1 ...

  3. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    The simplest and cheapest variety of sealed X-ray tube has a stationary anode (the Crookes tube) and runs with ~2 kW of electron beam power. The more expensive variety has a rotating-anode type source that runs with ~14 kW of e-beam power.

  4. Electron beam computed tomography - Wikipedia

    en.wikipedia.org/wiki/Electron_beam_computed...

    In EBCT, the X-ray tube itself is large and stationary, and partially surrounds the imaging circle. Rather than moving the tube itself, electron-beam focal point (and hence the X-ray source point) is rapidly swept along a tungsten anode in the tube, tracing a large circular arc on its inner surface.

  5. X-ray laser - Wikipedia

    en.wikipedia.org/wiki/X-ray_laser

    This article describes the x-ray lasers in plasmas, only. The plasma x-ray lasers rely on stimulated emission to generate or amplify coherent, directional, high-brightness electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually from ~3 nanometers to several tens of nanometers (nm) wavelength.

  6. Heel effect - Wikipedia

    en.wikipedia.org/wiki/Heel_effect

    An illustration of the heel effect in an x-ray tube. In X-ray tubes, the heel effect or, more precisely, the anode heel effect is a variation of the intensity of X-rays emitted by the anode depending on the direction of emission along the anode-cathode axis. X-rays emitted toward the anode are less intense than those emitted perpendicular to ...

  7. Line focus principle - Wikipedia

    en.wikipedia.org/wiki/Line_Focus_Principle

    In general, an X-ray's beam intensity is not uniform. When it focuses to a target, a conical shape appears (divergent beam). The intensity of the beam from the positive anode side is lower than the intensity from the negative cathode side because the photons created when the electrons strike the target have a longer way to travel through the rotating target on the anode side.