When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the ...

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.

  4. File:Sine cosine one period.svg - Wikipedia

    en.wikipedia.org/wiki/File:Sine_cosine_one...

    English: SINE and COSINE-Graph of the sine- and cosine-functions sin(x) and cos(x). One period from 0 to 2π is drawn. x- and y-axis have the same units. All labels are embedded in "Computer Modern" font. The x-scale is in appropriate units of pi.

  5. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector. In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions.

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The sine and cosine functions are fundamental to the theory of periodic functions, [63] such as those that describe sound and light waves. Fourier discovered that every continuous, periodic function could be described as an infinite sum of trigonometric functions.

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    Approximately equal behavior of some (trigonometric) functions for x → 0. For small angles, the trigonometric functions sine, cosine, and tangent can be calculated with reasonable accuracy by the following simple approximations:

  9. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, 1 1 − z 2 {\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}} , as a binomial series , and integrating term by term (using the integral definition as ...