Search results
Results From The WOW.Com Content Network
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.
Suppose two directed or undirected graphs G 1 and G 2 with adjacency matrices A 1 and A 2 are given. G 1 and G 2 are isomorphic if and only if there exists a permutation matrix P such that =. In particular, A 1 and A 2 are similar and therefore have the same minimal polynomial, characteristic polynomial, eigenvalues, determinant and trace ...
A skew-symmetric graph is a graph that is isomorphic to its own transpose graph, via a special kind of isomorphism that pairs up all of the vertices. The converse relation of a binary relation is the relation that reverses the ordering of each pair of related objects. If the relation is interpreted as a directed graph, this is the same thing as ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
Vandermonde matrix: A row consists of 1, a, a 2, a 3, etc., and each row uses a different variable. Walsh matrix: A square matrix, with dimensions a power of 2, the entries of which are +1 or −1, and the property that the dot product of any two distinct rows (or columns) is zero. Z-matrix: A matrix with all off-diagonal entries less than zero.
Use of the partial inverse in numerical analysis is due to the fact that there is some flexibility in the choices of pivots, allowing for non-invertible elements to be avoided, and because the operation of rotation (of the graph of the pivoted matrix) has better numerical stability than the shearing operation which is implicitly performed by ...
An involutory matrix which is also symmetric is an orthogonal matrix, and thus represents an isometry (a linear transformation which preserves Euclidean distance). Conversely every orthogonal involutory matrix is symmetric. [3] As a special case of this, every reflection and 180° rotation matrix is involutory.