Ads
related to: linear span example math test practice 3rd grade
Search results
Results From The WOW.Com Content Network
The cross-hatched plane is the linear span of u and v in both R 2 and R 3, here shown in perspective.. In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains .
In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.
This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.
The closure property also implies that every intersection of linear subspaces is a linear subspace. [11] Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G.
An uncountable Schauder basis is a linearly ordered set rather than a sequence, and each sum inherits the order of its terms from this linear ordering. They can and do arise in practice. As an example, a separable Hilbert space can only have a countable Schauder basis, but a non-separable Hilbert space may have an uncountable one.
SL – special linear group. SO – special orthogonal group. SOC – second order condition. Soln – solution. Sp – symplectic group. Sp – trace of a matrix, from the German "spur" used for the trace. sp, span – linear span of a set of vectors. (Also written with angle brackets.) Spec – spectrum of a ring. Spin – spin group.