Search results
Results From The WOW.Com Content Network
Associated with the slab suction force is the idea of trench roll-back. As a slab of oceanic crust subducts into the mantle, the hinge of the plate (the point where the plate begins to subduct) tends to regress away from the trench. This occurs because there is effectively no force to hold the hinge in one location. [5]
The subduction of bathymetric highs such as aseismic ridges, oceanic plateaus, and seamounts has been posited as the primary driver of flat slab subduction. [3] The Andean flat slab subduction zones, the Peruvian slab and the Pampean (Chilean) flat slab, are spatially correlated with the subduction of bathymetric highs, the Nazca Ridge and the Juan Fernandéz Ridge, respectively.
An oceanic trench is a type of convergent boundary at which two oceanic lithospheric slabs meet; the older (and therefore denser) of these slabs flexes and subducts beneath the other slab. Oceanic lithosphere moves into trenches at a global rate of about a tenth of a square meter per second.
The backward motion of the subduction zone relative to the motion of the plate which is being subducted is called trench rollback (also known as hinge rollback or hinge retreat). As the subduction zone and its associated trench pull backward, the overriding plate is stretched, thinning the crust and forming a back-arc basin.
Pool drain vortex as viewed from above the water at Grange Park wading pool Underwater view of drain, showing vortex-formation phenomenon. A drain is the primary vessel or conduit for unwanted water or waste liquids to flow away, either to a more useful area, funnelled into a receptacle, or run into sewers or stormwater mains as waste discharge to be released or processed.
Simplified diagram of a convergent boundary. A convergent boundary (also known as a destructive boundary) is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction.
Schematic cross section of a pressurized caisson. In geotechnical engineering, a caisson (/ ˈ k eɪ s ən,-s ɒ n /; borrowed from French caisson 'box', from Italian cassone 'large box', an augmentative of cassa) is a watertight retaining structure [1] used, for example, to work on the foundations of a bridge pier, for the construction of a concrete dam, [2] or for the repair of ships.
The forearc is the region between the trench and the volcanic arc. A forearc is a region in a subduction zone between an oceanic trench and the associated volcanic arc . Forearc regions are present along convergent margins and eponymously form 'in front of' the volcanic arcs that are characteristic of convergent plate margins.