When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magic square - Wikipedia

    en.wikipedia.org/wiki/Magic_square

    During the construction of the 3×3 magic square, the Greek and Latin squares with just three unique terms are much easier to deal with than the original square with nine different terms. The row sum and the column sum of the Greek square will be the same, α + β + γ, if each letter appears exactly once in a given column or a row.

  3. Doubly stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Doubly_stochastic_matrix

    There is a simple generalisation to matrices with more columns and rows such that the i th row sum is equal to r i (a positive integer), the column sums are equal to 1, and all cells are non-negative (the sum of the row sums being equal to the number of columns). Any matrix in this form can be expressed as a convex combination of matrices in ...

  4. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    The Kronecker sum is different from the direct sum, but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n -by- n , B is m -by- m and I k {\displaystyle \mathbf {I} _{k}} denotes the k -by- k identity matrix then the Kronecker sum is defined by:

  5. Magic constant - Wikipedia

    en.wikipedia.org/wiki/Magic_constant

    This model has two notable properties. First it demonstrates the balanced nature of all magic squares. If such a model is suspended from the central cell the structure balances. (consider the magic sums of the rows/columns .. equal mass at an equal distance balance). The second property that can be calculated is the moment of inertia. Summing ...

  6. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    The addition of two whole numbers results in the total amount or sum of those values combined. The example in the adjacent image shows two columns of three apples and two apples each, totaling at five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5" (that is, "3 plus 2 is equal to 5").

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If R is a normed ring, then the condition of row or column finiteness can be relaxed. With the norm in place, absolutely convergent series can be used instead of finite sums. For example, the matrices whose column sums are convergent sequences form a ring. Analogously, the matrices whose row sums are convergent series also form a ring.

  8. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The column space of a matrix is the image or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space. The dimension of the column space is called the rank of the matrix and is at most min(m, n). [1]

  9. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    Using unit vectors for u and/or v, individual columns, rows or elements [4] of A may be manipulated and a correspondingly updated determinant computed relatively cheaply in this way. When the matrix determinant lemma is used in conjunction with the Sherman–Morrison formula , both the inverse and determinant may be conveniently updated together.