Search results
Results From The WOW.Com Content Network
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when an electric current flows through it. [1] An inductor typically consists of an insulated wire wound into a coil.
The two-element LC circuit described above is the simplest type of inductor-capacitor network (or LC network). It is also referred to as a second order LC circuit [ 1 ] [ 2 ] to distinguish it from more complicated (higher order) LC networks with more inductors and capacitors.
Also known as the inductor, the coil is used to transfer the energy from the power unit and work head to the work piece. Inductors range in complexity from a simple wound solenoid consisting of a number of turns of copper tube wound around a mandrel, to a precision item machined from solid copper, brazed and soldered together. As the inductor ...
The tuned circuit consists of a coil of wire (called an inductor) and a capacitor connected together. The circuit has a resonant frequency, and allows radio waves at that frequency to pass through to the detector while largely blocking waves at other frequencies. One or both of the coil or capacitor is adjustable, allowing the circuit to be ...
The system has one or more loops in the area in which a hearing aid user would be present. Such an induction loop receiver is classically a very small iron-cored inductor . The system commonly uses an analog power amplifier matched to the low impedance of the transmission loop.
The brake does not work by the simple attraction of a ferromagnetic metal to the magnet. See the diagram at right. It shows a metal sheet (C) moving to the right under a magnet. The magnetic field (B, green arrows) of the magnet's north pole N passes down through the sheet. Since the metal is moving, the magnetic flux through the sheet is changing.
In electromagnetism, an eddy current (also called Foucault's current) is a loop of electric current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magnetic field.
Because the current in an inductor is integral of the voltage with respect to time, for a sinusoidal voltage waveform the current lags the voltage by 90°, and the induction motor always consumes reactive power, regardless of whether it is consuming electrical power and delivering mechanical power as a motor or consuming mechanical power and ...