When.com Web Search

  1. Ad

    related to: low r squared but significant results mean calculator formula excel template

Search results

  1. Results From The WOW.Com Content Network
  2. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  3. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The standard deviation is the square root of the variance. When individual determinations of an age are not of equal significance, it is better to use a weighted mean to obtain an "average" age, as follows: ¯ = = =.

  4. Pseudo-R-squared - Wikipedia

    en.wikipedia.org/wiki/Pseudo-R-squared

    The last value listed, labelled “r2CU” is the pseudo-r-squared by Nagelkerke and is the same as the pseudo-r-squared by Cragg and Uhler. Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R 2 cannot be applied as a measure for goodness of fit and when a likelihood ...

  5. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In fluid dynamics, normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species concentration. The value is compared to industry standards to optimize the design of flow and thermal equipment ...

  6. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    All have the same trend, but more filtering leads to higher r 2 of fitted trend line. The least-squares fitting process produces a value, r-squared (r 2), which is 1 minus the ratio of the variance of the residuals to the variance of the dependent variable. It says what fraction of the variance of the data is explained by the fitted trend line.

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    If a vector of predictions is generated from a sample of data points on all variables, and is the vector of observed values of the variable being predicted, with ^ being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as

  8. Efficiency (statistics) - Wikipedia

    en.wikipedia.org/wiki/Efficiency_(statistics)

    In estimating the mean of uncorrelated, identically distributed variables we can take advantage of the fact that the variance of the sum is the sum of the variances.In this case efficiency can be defined as the square of the coefficient of variation, i.e., [13]

  9. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    Standard method like Gauss elimination can be used to solve the matrix equation for .A more numerically stable method is provided by QR decomposition method. Since the matrix is a symmetric positive definite matrix, can be solved twice as fast with the Cholesky decomposition, while for large sparse systems conjugate gradient method is more effective.