When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Unit quaternions can be identified with rotations in and were called versors by Hamilton. [28] Also see Quaternions and spatial rotation for more information about modeling three-dimensional rotations using quaternions. See Hanson (2005) [29] for visualization of quaternions.

  3. History of quaternions - Wikipedia

    en.wikipedia.org/wiki/History_of_quaternions

    In mathematics, quaternions are a non-commutative number system that extends the complex numbers.Quaternions and their applications to rotations were first described in print by Olinde Rodrigues in all but name in 1840, [1] but independently discovered by Irish mathematician Sir William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space.

  4. Classical Hamiltonian quaternions - Wikipedia

    en.wikipedia.org/wiki/Classical_Hamiltonian...

    William Rowan Hamilton invented quaternions, a mathematical entity in 1843. This article describes Hamilton's original treatment of quaternions, using his notation and terms. Hamilton's treatment is more geometric than the modern approach, which emphasizes quaternions' algebraic properties. Mathematically, quaternions discussed differ from the ...

  5. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    It can also be realized as the subgroup of unit quaternions generated by [10] = / and =. The generalized quaternion groups have the property that every abelian subgroup is cyclic. [ 11 ] It can be shown that a finite p -group with this property (every abelian subgroup is cyclic) is either cyclic or a generalized quaternion group as defined ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:

  8. William Rowan Hamilton - Wikipedia

    en.wikipedia.org/wiki/William_Rowan_Hamilton

    The Hamilton Institute is an applied mathematics research institute at Maynooth University and the Royal Irish Academy holds an annual public Hamilton lecture at which Murray Gell-Mann, Frank Wilczek, Andrew Wiles and Timothy Gowers have all spoken. 2005 was the 200th anniversary of Hamilton's birth and the Irish government designated that the ...

  9. Hypercomplex number - Wikipedia

    en.wikipedia.org/wiki/Hypercomplex_number

    In the nineteenth century, number systems called quaternions, tessarines, coquaternions, biquaternions, and octonions became established concepts in mathematical literature, added to the real and complex numbers. The concept of a hypercomplex number covered them all, and called for a discipline to explain and classify them.