Ads
related to: collinearity of two vectors worksheet 3 pdf printable form
Search results
Results From The WOW.Com Content Network
Let x, y, and z refer to a coordinate system with the x- and y-axis in the sensor plane. Denote the coordinates of the point P on the object by ,,, the coordinates of the image point of P on the sensor plane by x and y and the coordinates of the projection (optical) centre by ,,.
In particular, for three points in the plane (n = 2), the above matrix is square and the points are collinear if and only if its determinant is zero; since that 3 × 3 determinant is plus or minus twice the area of a triangle with those three points as vertices, this is equivalent to the statement that the three points are collinear if and only ...
By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).
In particular, the collineations of the real projective plane PG(2, R) are exactly the homographies, as R has no non-trivial automorphisms (see Automorphism#Examples and footnote d in Real number). Suppose φ is a nonsingular semilinear map from V to W , with the dimension of V at least three.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
A plane is said to have the "minor affine Desargues property" when two triangles in parallel perspective, having two parallel sides, must also have the third sides parallel. If this property holds in the affine plane defined by a ternary ring, then there is an equivalence relation between "vectors" defined by pairs of points from the plane. [14]
The TRIAD method is the earliest published algorithm for determining spacecraft attitude, which was first introduced by Harold Black in 1964. [1] [2] [3] Given the knowledge of two vectors in the reference and body coordinates of a satellite, the TRIAD algorithm obtains the direction cosine matrix relating to both frames.
If vectors u and v have direction cosines (α u, β u, γ u) and (α v, β v, γ v) respectively, with an angle θ between them, their units vectors are ^ = + + (+ +) = + + ^ = + + (+ +) = + +. Taking the dot product of these two unit vectors yield, ^ ^ = + + = , where θ is the angle between the two unit vectors, and is also the angle between u and v.