Search results
Results From The WOW.Com Content Network
Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and Chen-like behavior. Chen-Lee system: continuous: real: 3: Chossat-Golubitsky symmetry map: Chua circuit [12 ...
The Lorenz equations can arise in simplified models for lasers, [4] dynamos, [5] thermosyphons, [6] brushless DC motors, [7] electric circuits, [8] chemical reactions [9] and forward osmosis. [10] Interestingly, the same Lorenz equations were also derived in 1963 by Sauermann and Haken [11] for a single-mode laser.
The main catalyst for the development of chaos theory was the electronic computer. Much of the mathematics of chaos theory involves the repeated iteration of simple mathematical formulas, which would be impractical to do by hand. Electronic computers made these repeated calculations practical, while figures and images made it possible to ...
In chaos theory, the butterfly effect is the sensitive dependence on initial conditions in which a small change in one state of a deterministic nonlinear system can result in large differences in a later state. The term is closely associated with the work of the mathematician and meteorologist Edward Norton Lorenz.
This is a list of dynamical system and differential equation topics, by Wikipedia page. See also list of partial differential equation topics , list of equations . Dynamical systems, in general
Chaos is not peculiar to non-linear systems alone and it can also be exhibited by infinite dimensional linear systems. [11] As mentioned above, the logistic map itself is an ordinary quadratic function. An important question in terms of dynamical systems is how the behavior of the trajectory changes when the parameter r changes.
Lorenz was born in 1917 in West Hartford, Connecticut. [5] He acquired an early love of science from both sides of his family. His father, Edward Henry Lorenz (1882-1956), majored in mechanical engineering at the Massachusetts Institute of Technology, and his maternal grandfather, Lewis M. Norton, developed the first course in chemical engineering at MIT in 1888.
The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...