Search results
Results From The WOW.Com Content Network
Python does not contain the classical for loop, rather a foreach loop is used to iterate over the output of the built-in range() function which returns an iterable sequence of integers. for i in range ( 1 , 6 ): # gives i values from 1 to 5 inclusive (but not 6) # statements print ( i ) # if we want 6 we must do the following for i in range ( 1 ...
While loops; For loops; Do-while; ... number of items in range. last inclusive last value of range. ... Generate range (lazily) Infinite range (lazily) Python xrange ...
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
For this reason, ranges in computing are often represented by half-open intervals; the range from m to n (inclusive) is represented by the range from m (inclusive) to n + 1 (exclusive) to avoid fencepost errors. For example, a loop that iterates five times (from 0 to 4 inclusive) can be written as a half-open interval from 0 to 5:
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
For example, a ranged loop like for x = 1 to 10 can be implemented as iteration through a generator, as in Python's for x in range(1, 10). Further, break can be implemented as sending finish to the generator and then using continue in the loop.
Specifically, the for loop will call a value's into_iter() method, which returns an iterator that in turn yields the elements to the loop. The for loop (or indeed, any method that consumes the iterator), proceeds until the next() method returns a None value (iterations yielding elements return a Some(T) value, where T is the element type).