Search results
Results From The WOW.Com Content Network
X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter. [1] The experiment is usually performed at synchrotron radiation facilities, which provide intense and tunable X-ray beams. Samples can be in the gas phase, solutions, or solids. [2]
When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge.
The XANES energy region [3] extends between the edge region and the EXAFS region over a 50-100 eV energy range around the core level x-ray absorption threshold. Before 1980 the XANES region was wrongly assigned to different final states: a) unoccupied total density of states, or b) unoccupied molecular orbitals (kossel structure) or c) unoccupied atomic orbitals or d) low energy EXAFS ...
X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected ...
X-ray absorption; X-ray enhancement; sample macroscopic effects; All elements absorb X-rays to some extent. Each element has a characteristic absorption spectrum which consists of a "saw-tooth" succession of fringes, each step-change of which has wavelength close to an emission line of the element. Absorption attenuates the secondary X-rays ...
X-ray X-ray absorption spectroscopy: 2 Ultraviolet–visible UV–vis absorption spectroscopy 3 Infrared ... Theory. It is a branch of atomic spectra where ...
Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy.
Kramers' law is a formula for the spectral distribution of X-rays produced by an electron hitting a solid target. The formula concerns only bremsstrahlung radiation, not the element specific characteristic radiation. It is named after its discoverer, the Dutch physicist Hendrik Anthony Kramers. [1]