When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Potential applications of graphene - Wikipedia

    en.wikipedia.org/wiki/Potential_applications_of...

    Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials, and favoured by massive cost decreases in graphene production. [1] [2] [3]

  3. Graphene plasmonics - Wikipedia

    en.wikipedia.org/wiki/Graphene_plasmonics

    So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation [15] [16] to biological/chemical sensing. [17] [18] [19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported. [20]

  4. Electronic properties of graphene - Wikipedia

    en.wikipedia.org/wiki/Electronic_properties_of...

    The electronic properties of graphene are significantly influenced by the supporting substrate. [59] [60] The Si(100)/H surface does not perturb graphene's electronic properties, whereas the interaction between it and the clean Si(100) surface changes its electronic states significantly. This effect results from the covalent bonding between C ...

  5. Graphene - Wikipedia

    en.wikipedia.org/wiki/Graphene

    Graphene (/ ˈ ɡ r æ f iː n /) [1] is a carbon allotrope consisting of a single layer of atoms arranged in a honeycomb planar nanostructure. [2] [3] The name "graphene" is derived from "graphite" and the suffix -ene, indicating the presence of double bonds within the carbon structure.

  6. Epitaxial graphene growth on silicon carbide - Wikipedia

    en.wikipedia.org/wiki/Epitaxial_graphene_growth...

    Epitaxial graphene growth on silicon carbide (SiC) by thermal decomposition is a method to produce large-scale few-layer graphene (FLG). Graphene is one of the most promising nanomaterials for the future because of its various characteristics, like strong stiffness and high electric and thermal conductivity.

  7. Exfoliation (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Exfoliation_(chemistry)

    As graphene finds increasing applications in various areas of electronics, the quest for an optimized industrial production method for graphene becomes more significant. Currently, graphene is projected to play a crucial role in the production of low-cost solar cells, energy storage systems, and sensors.

  8. Twistronics - Wikipedia

    en.wikipedia.org/wiki/Twistronics

    Twistronics (from twist and electronics) is the study of how the angle (the twist) between layers of two-dimensional materials can change their electrical properties. [ 1 ] [ 2 ] Materials such as bilayer graphene have been shown to have vastly different electronic behavior, ranging from non-conductive to superconductive , that depends ...

  9. Graphenated carbon nanotube - Wikipedia

    en.wikipedia.org/wiki/Graphenated_carbon_nanotube

    The fundamental advantage of an integrated graphene-CNT structure is the high surface area three-dimensional framework of the CNTs coupled with the high edge density of graphene. Graphene edges provide significantly higher charge density and reactivity than the basal plane, but they are difficult to arrange in a three-dimensional, high volume ...