Search results
Results From The WOW.Com Content Network
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]
The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series = = = + + +Leonhard Euler considered this series in the 1730s for real values of s, in conjunction with his solution to the Basel problem.
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be 1 / 2 . In other words, all known nontrivial zeros of the Riemann zeta are of the form z = 1 / 2 + yi where y is a real number.
Z function in the complex plane, plotted with a variant of domain coloring. Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half.
Any non-vanishing holomorphic function f defined on the strip can be approximated by the ζ-function.. In mathematics, the universality of zeta functions is the remarkable ability of the Riemann zeta function and other similar functions (such as the Dirichlet L-functions) to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.
Zeta functions and L-functions express important relations between the geometry of Riemann surfaces, number theory and dynamical systems.Zeta functions, and their generalizations such as the Selberg class S, are conjectured to have various important properties, including generalizations of the Riemann hypothesis and various relationships with automorphic forms as well as to the representations ...
where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...