Search results
Results From The WOW.Com Content Network
It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation: any index may appear at most twice and furthermore a raised index must contract with a lowered index ...
In mathematics you have a function, you write down the function, you calculate, or you add, or you multiply, or you can differentiate. You have something very concrete. In geometry the geometric situation is described by numbers, but you can change your numbers arbitrarily. So to handle this, you need the Ricci calculus.
Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, a problem that was stated in terms of elementary arithmetic, and remained unsolved for several centuries.
Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in R n , {\displaystyle \mathbb {R} ^{n},} and the study of these lattices provides fundamental information on algebraic numbers. [ 1 ]
The Hodge index theorem was a result on the intersection number theory for curves on an algebraic surface: it determines the signature of the corresponding quadratic form. This result was sought by the Italian school of algebraic geometry , but was proved by the topological methods of Lefschetz .
A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics.This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems.
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.
A subgroup H of finite index in a group G (finite or infinite) always contains a normal subgroup N (of G), also of finite index. In fact, if H has index n, then the index of N will be some divisor of n! and a multiple of n; indeed, N can be taken to be the kernel of the natural homomorphism from G to the permutation group of the left (or right ...