When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Helicase - Wikipedia

    en.wikipedia.org/wiki/Helicase

    Helicase polarity, which is also deemed "directionality", is defined as the direction (characterized as 5'→3' or 3'→5') of helicase movement on the DNA/RNA single-strand along which it is moving. This determination of polarity is vital in f.ex. determining whether the tested helicase attaches to the DNA leading strand, or the DNA lagging ...

  3. RNA polymerase - Wikipedia

    en.wikipedia.org/wiki/RNA_polymerase

    RNA polymerase (purple) unwinding the DNA double helix. It uses one strand (darker orange) as a template to create the single-stranded messenger RNA (green). In molecular biology , RNA polymerase (abbreviated RNAP or RNApol ), or more specifically DNA-directed/dependent RNA polymerase ( DdRP ), is an enzyme that catalyzes the chemical reactions ...

  4. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Relieves strain of unwinding by DNA helicase; this is a specific type of topoisomerase DNA ligase: Re-anneals the semi-conservative strands and joins Okazaki Fragments of the lagging strand. Primase: Provides a starting point of RNA (or DNA) for DNA polymerase to begin synthesis of the new DNA strand. Telomerase

  5. DNA polymerase - Wikipedia

    en.wikipedia.org/wiki/DNA_polymerase

    Retroviruses encode an unusual DNA polymerase called reverse transcriptase, which is an RNA-dependent DNA polymerase (RdDp) that synthesizes DNA from a template of RNA. The reverse transcriptase family contain both DNA polymerase functionality and RNase H functionality, which degrades RNA base-paired to DNA. An example of a retrovirus is HIV. [14]

  6. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    At the end of Okazaki fragment synthesis, DNA polymerase δ runs into the previous Okazaki fragment and displaces its 5' end containing the RNA primer and a small segment of DNA. This generates an RNA-DNA single strand flap, which must be cleaved, and the nick between the two Okazaki fragments must be sealed by DNA ligase I.

  7. General transcription factor - Wikipedia

    en.wikipedia.org/wiki/General_transcription_factor

    The RNA polymerase core associates with the sigma factor to form RNA polymerase holoenzyme. Sigma factor reduces the affinity of RNA polymerase for nonspecific DNA while increasing specificity for promoters, allowing transcription to initiate at correct sites. The core enzyme of RNA polymerase has five subunits (protein subunits) (~400 kDa). [14]

  8. Polymerase - Wikipedia

    en.wikipedia.org/wiki/Polymerase

    Structure of Taq DNA polymerase. In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or RNA by half ladder replication.

  9. Primosome - Wikipedia

    en.wikipedia.org/wiki/Primosome

    The primosome attaches 1-10 RNA nucleotides to the single stranded DNA creating a DNA-RNA hybrid. This sequence of RNA is used as a primer to initiate DNA polymerase III. The RNA bases are ultimately replaced with DNA bases by RNase H nuclease (eukaryotes) or DNA polymerase I nuclease (prokaryotes). DNA Ligase then acts to join the two ends ...