Search results
Results From The WOW.Com Content Network
Lead perchlorate trihydrate is produced by the reaction of lead(II) oxide, lead carbonate, or lead nitrate by perchloric acid: . Pb(NO 3) 2 + HClO 4 → Pb(ClO 4) 2 + HNO 3. The excess perchloric acid was removed by first heating the solution to 125 °C, then heating it under moist air at 160 °C to remove the perchloric acid by converting the acid to the dihydrate.
2 PbCl 2 + 4 RMgBr → R 4 Pb + Pb + 4 MgBrCl 3 PbCl 2 + 6 RMgBr → R 3 Pb-PbR 3 + Pb + 6 MgBrCl [12] These reactions produce derivatives that are more similar to organosilicon compounds, i.e. that Pb(II) tends to disproportionate upon alkylation. PbCl 2 can be used to produce PbO 2 by treating it with sodium hypochlorite (NaClO), forming a ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Copper(II) chlorate is a chemical compound of the transition metal copper and the chlorate anion with basic formula Cu(ClO 3) 2. Copper chlorate is an oxidiser. [5] It commonly forms the tetrahydrate, Cu(ClO 3) 2 ·4H 2 O.
Like all metal carbonates, lead(II) carbonate adopts a dense, highly crosslinked structure consisting of intact CO 2− 3 and metal cation sites. As verified by X-ray crystallography, the Pb(II) centers are seven-coordinate, being surrounded by multiple carbonate ligands. The carbonate centers are bonded bidentate to a single Pb and bridge to ...
Chlorate is the common name of the ClO − 3 anion, whose chlorine atom is in the +5 oxidation state.The term can also refer to chemical compounds containing this anion, with chlorates being the salts of chloric acid.
It is then converted to the ammonium salt (NH 4) 2 PbCl 6 by adding ammonium chloride (NH 4 Cl). Finally, the solution is treated with concentrated sulfuric acid H 2 SO 4, to separate out lead tetrachloride. This series of reactions is conducted at 0 °C. The following equations illustrate the reaction: PbCl 2 + 2HCl + Cl 2 → H 2 PbCl 6
Addition of hydrogen sulfide or sulfide salts to a solution containing a lead salt, such as PbCl 2, gives a black precipitate of lead sulfide. Pb 2+ + H 2 S → PbS↓ + 2 H + This reaction is used in qualitative inorganic analysis. The presence of hydrogen sulfide or sulfide ions may be tested using "lead acetate paper."