When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.

  3. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    Black next showed that a water temperature of 176 °F was needed to melt an equal mass of ice until it was all 32 °F. So now 176 – 32 = 144 “degrees of heat” seemed to be needed to melt the ice. The modern value for the heat of fusion of ice would be 143 “degrees of heat” on the same scale (79.5 “degrees of heat Celsius”). [18] [15]

  4. Joback method - Wikipedia

    en.wikipedia.org/wiki/Joback_method

    The Joback method, often named Joback–Reid method, predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only. It is named after Kevin G. Joback in 1984 [1] and developed it further with Robert C. Reid. [2] The Joback method is an extension of the Lydersen method [3] and uses very similar groups, formulas, and parameters for the three ...

  5. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  6. Freezing-point depression - Wikipedia

    en.wikipedia.org/wiki/Freezing-point_depression

    In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...

  7. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...

  8. Melting point - Wikipedia

    en.wikipedia.org/wiki/Melting_point

    However, further heat needs to be supplied for the melting to take place: this is called the heat of fusion, and is an example of latent heat. [ 10 ] From a thermodynamics point of view, at the melting point the change in Gibbs free energy (ΔG) of the material is zero, but the enthalpy ( H ) and the entropy ( S ) of the material are increasing ...

  9. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Clausius–Clapeyron_relation

    Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.