When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Fractional programming studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem. Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex ...

  3. File:Poloni's two objective function.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Poloni's_two_objective...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  4. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If all the hard constraints are linear and some are inequalities, but the objective function is quadratic, the problem is a quadratic programming problem. It is one type of nonlinear programming. It can still be solved in polynomial time by the ellipsoid method if the objective function is convex; otherwise the problem may be NP hard.

  5. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    Barrier methods constitute an alternative class of algorithms for constrained optimization. These methods also add a penalty-like term to the objective function, but in this case the iterates are forced to remain interior to the feasible domain and the barrier is in place to bias the iterates to remain away from the boundary of the feasible region.

  6. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In the standard form it is possible to assume, without loss of generality, that the objective function f is a linear function.This is because any program with a general objective can be transformed into a program with a linear objective by adding a single variable t and a single constraint, as follows: [9]: 1.4

  7. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  8. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1]

  9. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    f : ℝ n → ℝ is the objective function to be minimized over the n-variable vector x, g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem.