When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    Numerical differentiation. Use of numerical analysis to estimate derivatives of functions. Finite difference estimation of derivative. In numerical analysis, numerical differentiation algorithms estimate the derivative of a mathematical function or function subroutine using values of the function and perhaps other knowledge about the function.

  3. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    Calculus. In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. [1][2][3] Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is. {\displaystyle h' (x)= {\frac {f' (x)g (x)-f (x)g' (x)} { (g (x))^ {2}}}.} It is ...

  4. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    t. e. In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    v. t. e. In mathematics, the derivative is a fundamental tool that quantifies the sensitivity of change of a function 's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  7. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    Calculus. In calculus, the product rule (or Leibniz rule[1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as or in Leibniz's notation as.

  8. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    v. t. e. In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of is denoted as , where if and only if , then the inverse function rule is, in Lagrange's notation,

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    In the neighbourhood of x 0, for a the best possible choice is always f(x 0), and for b the best possible choice is always f'(x 0). For c, d, and higher-degree coefficients, these coefficients are determined by higher derivatives of f. c should always be ⁠ f''(x 0) / 2 ⁠, and d should always be ⁠ f'''(x 0) / 3! ⁠.