When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    To qualify as an abelian group, the set and operation, (,), must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the ...

  3. Category of abelian groups - Wikipedia

    en.wikipedia.org/wiki/Category_of_abelian_groups

    Since the group of integers Z serves as a generator, the category Ab is therefore a Grothendieck category; indeed it is the prototypical example of a Grothendieck category. An object in Ab is injective if and only if it is a divisible group; it is projective if and only if it is a free abelian group.

  4. Elementary abelian group - Wikipedia

    en.wikipedia.org/wiki/Elementary_abelian_group

    Every elementary abelian p-group is a vector space over the prime field with p elements, and conversely every such vector space is an elementary abelian group. By the classification of finitely generated abelian groups, or by the fact that every vector space has a basis, every finite elementary abelian group must be of the form (Z/pZ) n for n a ...

  5. Abelian category - Wikipedia

    en.wikipedia.org/wiki/Abelian_category

    Subobjects and quotient objects are well-behaved in abelian categories. For example, the poset of subobjects of any given object A is a bounded lattice. Every abelian category A is a module over the monoidal category of finitely generated abelian groups; that is, we can form a tensor product of a finitely generated abelian group G and any ...

  6. Category:Abelian group theory - Wikipedia

    en.wikipedia.org/wiki/Category:Abelian_group_theory

    Pages in category "Abelian group theory" The following 37 pages are in this category, out of 37 total. This list may not reflect recent changes. 0–9. Abelian 2 ...

  7. Torsion subgroup - Wikipedia

    en.wikipedia.org/wiki/Torsion_subgroup

    An abelian group A is torsion-free if and only if it is flat as a Z-module, which means that whenever C is a subgroup of some abelian group B, then the natural map from the tensor product C ⊗ A to B ⊗ A is injective. Tensoring an abelian group A with Q (or any divisible group) kills torsion. That is, if T is a torsion group then T ⊗ Q = 0.

  8. p-group - Wikipedia

    en.wikipedia.org/wiki/P-group

    p-groups of the same order are not necessarily isomorphic; for example, the cyclic group C 4 and the Klein four-group V 4 are both 2-groups of order 4, but they are not isomorphic. Nor need a p-group be abelian; the dihedral group Dih 4 of order 8 is a non-abelian 2-group. However, every group of order p 2 is abelian. [note 1]

  9. Abelian 2-group - Wikipedia

    en.wikipedia.org/wiki/Abelian_2-group

    An Abelian 2-group is a groupoid (that is, a category in which every morphism is an isomorphism) with a bifunctor +: and natural transformations: + +: (+) + + (+) which satisfy a host of axioms ensuring these transformations behave similarly to commutativity and associativity () for an Abelian group.