When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square wave - Wikipedia

    en.wikipedia.org/wiki/Square_wave

    (Odd) harmonics of a 1000 Hz square wave Graph showing the first 3 terms of the Fourier series of a square wave Using Fourier expansion with cycle frequency f over time t , an ideal square wave with an amplitude of 1 can be represented as an infinite sum of sinusoidal waves: x ( t ) = 4 π ∑ k = 1 ∞ sin ⁡ ( 2 π ( 2 k − 1 ) f t ) 2 k ...

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    For example, the square of the Fourier transform, W 2, ... In quantum mechanics, the momentum and position wave functions are Fourier transform pairs, ...

  4. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A square wave (represented as the blue dot) is approximated by its sixth partial sum (represented as the purple dot), formed by summing the first six terms (represented as arrows) of the square wave's Fourier series. Each arrow starts at the vertical sum of all the arrows to its left (i.e. the previous partial sum).

  5. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    Inspired by correspondence in Nature between Michelson and A. E. H. Love about the convergence of the Fourier series of the square wave function, J. Willard Gibbs published a note in 1898 pointing out the important distinction between the limit of the graphs of the partial sums of the Fourier series of a sawtooth wave and the graph of the limit ...

  6. Optical transfer function - Wikipedia

    en.wikipedia.org/wiki/Optical_transfer_function

    Formally, the optical transfer function is defined as the Fourier transform of the point spread function (PSF, that is, the impulse response of the optics, the image of a point source). As a Fourier transform, the OTF is generally complex-valued; however, it is real-valued in the common case of a PSF that is symmetric about its center.

  7. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The transfer function of an electronic filter is the amplitude at the output as a function of the frequency of a constant amplitude sine wave applied to the input. For optical imaging devices, the optical transfer function is the Fourier transform of the point spread function (a function of spatial frequency).

  8. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The Fourier transform takes functions in the above space to elements of l 2 (Z), the space of square summable functions Z → C. The latter space is a Hilbert space and the Fourier transform is an isomorphism of Hilbert spaces. [nb 10] Its basis is {e i, i ∈ Z} with e i (j) = δ ij, i, j ∈ Z.

  9. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.