When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    There is a half-life describing any exponential-decay process. For example: As noted above, in radioactive decay the half-life is the length of time after which there is a 50% chance that an atom will have undergone nuclear decay. It varies depending on the atom type and isotope, and is usually determined experimentally. See List of nuclides.

  3. Effective half-life - Wikipedia

    en.wikipedia.org/wiki/Effective_half-life

    Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]

  4. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay. The notation λ for the decay constant is a remnant of the usual notation for an eigenvalue . In this case, λ is the eigenvalue of the negative of the differential operator with N ( t ) as the corresponding eigenfunction .

  5. Decay correction - Wikipedia

    en.wikipedia.org/wiki/Decay_correction

    But they might be tested for radioactivity all at once. Decay correction is one way of working out what the radioactivity would have been at the time it was taken, rather than at the time it was tested. For example, the isotope copper-64, commonly used in medical research, has a half-life of 12.7 hours. If you inject a large group of animals at ...

  6. Half time (physics) - Wikipedia

    en.wikipedia.org/wiki/Half_time_(physics)

    The voltage (v) on the capacitor (C) changes with time as the capacitor is charged or discharged via the resistor (R) In electronics, when a capacitor is charged or discharged via a resistor, the voltage on the capacitor follows the above formula, with the half time approximately equal to 0.69 times the time constant, which is equal to the product of the resistance and the capacitance.

  7. Branching fraction - Wikipedia

    en.wikipedia.org/wiki/Branching_fraction

    The half-life of this isotope is 6.480 days, [2] which corresponds to a total decay constant of 0.1070 d −1. Then the partial decay constants, as computed from the branching fractions, are 0.1050 d −1 for ε/β + decays, and 2.14×10 −4 d −1 for β − decays.

  8. Biological half-life - Wikipedia

    en.wikipedia.org/wiki/Biological_half-life

    Caesium in the body has a biological half-life of about one to four months. Mercury (as methylmercury) in the body has a half-life of about 65 days. Lead in the blood has a half life of 28–36 days. [29] [30] Lead in bone has a biological half-life of about ten years. Cadmium in bone has a biological half-life of about 30 years.

  9. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    where / is the half-life, E the total kinetic energy (of the alpha particle and the daughter nucleus), and A and B are coefficients that depend on the isotope's atomic number Z. The law works best for nuclei with even atomic number and even atomic mass.