Ads
related to: tangent to a straight line examples math problemsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (secant lines) passing through two points, A and B, those that lie on the function curve. The tangent at A is the limit when point B approximates or tends to A. The existence and uniqueness of the tangent line ...
The two circles in the Two points, one line problem where the line through P and Q is not parallel to the given line l, can be constructed with compass and straightedge by: Draw the line m through the given points P and Q. The point G is where the lines l and m intersect; Draw circle C that has PQ as diameter. Draw one of the tangents from G to ...
No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...
The same inversion transforms the third circle into another circle. The solution of the inverted problem must either be (1) a straight line parallel to the two given parallel lines and tangent to the transformed third given circle; or (2) a circle of constant radius that is tangent to the two given parallel lines and the transformed given circle.
Descartes' theorem still applies when one of the circles is replaced by a straight line of zero curvature. If one of the three circles is replaced by a straight line tangent to the remaining circles, then its curvature is zero and drops out of equation (1). For instance, if =, then equation (1) can be factorized as [31]
If a point P moves along a line l, its polar p rotates about the pole L of the line l. If two tangent lines can be drawn from a pole to the circle, then its polar passes through both tangent points. If a point lies on the circle, its polar is the tangent through this point. If a point P lies on its own polar line, then P is on the circle.