Search results
Results From The WOW.Com Content Network
If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)
If the ratio of the two sample rates is (or can be approximated by) [A] [4] a fixed rational number L/M: generate an intermediate signal by inserting L − 1 zeros between each of the original samples. Low-pass filter this signal at half of the lower of the two rates. Select every M-th sample from the filtered output, to obtain the result. [5]
Functions of space, time, or any other dimension can be sampled, and similarly in two or more dimensions. For functions that vary with time, let () be a continuous function (or "signal") to be sampled, and let sampling be performed by measuring the value of the continuous function every seconds, which is called the sampling interval or sampling period.
The impulse can be modeled as a Dirac delta function for continuous-time systems, or as the discrete unit sample function for discrete-time systems. The Dirac delta represents the limiting case of a pulse made very short in time while maintaining its area or integral (thus giving an infinitely high peak).
The user specifies the alternative hypothesis in terms of differing response rates, means, survival times, relative risks, or odds ratios. Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated.
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
The FIR convolution is a cross-correlation between the input signal and a time-reversed copy of the impulse response. Therefore, the matched filter's impulse response is "designed" by sampling the known pulse-shape and using those samples in reverse order as the coefficients of the filter. [1]
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.