Search results
Results From The WOW.Com Content Network
In metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. [1] The technique works by adding atoms of one element (the alloying element) to the crystalline lattice of another element (the base metal), forming a solid solution.
The IUPAC definition of a solid solution is a "solid in which components are compatible and form a unique phase". [3]The definition "crystal containing a second constituent which fits into and is distributed in the lattice of the host crystal" given in refs., [4] [5] is not general and, thus, is not recommended.
High-strength steels generally fall into three basic categories, classified by the strengthening mechanism employed. 1- solid-solution-strengthened steels (rephos steels) 2- grain-refined steels or high strength low alloy steels (HSLA) 3- transformation-hardened steels Transformation-hardened steels are the third type of high-strength steels.
Solution treatment and aging is sometimes abbreviated "STA" in specifications and certificates for metals. Two different heat treatments involving precipitates can alter the strength of a material: solution heat treating and precipitation heat treating. Solid solution strengthening involves formation of a single-phase solid solution via ...
Because of the extreme supersaturation of solid solution carbon, the crystal lattice becomes BCT (body-centered tetragonal) instead. This phase is called martensite, and is extremely hard due to a combined effect of the distorted crystal structure and the extreme solid solution strengthening, both mechanisms of which resist slip dislocation.
Hume-Rothery rules, named after William Hume-Rothery, are a set of basic rules that describe the conditions under which an element could dissolve in a metal, forming a solid solution. There are two sets of rules; one refers to substitutional solid solutions, and the other refers to interstitial solid solutions.
Dynamic strain aging also causes a plateau in the strength, a peak in flow stress [9] a peak in work hardening, a peak in the Hall–Petch constant, and minimum variation of ductility with temperature. [10] Since dynamic strain aging is a hardening phenomenon it increases the strength of the material. [10]
Solid solution strengthening also increases the CRSS compared to a pure single component material because the solute atoms distort the lattice, preventing the dislocation motion necessary for plasticity. With dislocation motion inhibited, it becomes harder to activate the necessary 5 independent slip systems, so the material becomes stronger ...