Search results
Results From The WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
This page lists examples of magnetic moments produced by various sources, grouped by orders of magnitude.The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is.
The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).
= 8.4 6 × 10 −3 m bohr, ... [Converter 1] approximately 365. ... 1 ⁄ 100 of the energy required to warm one gram of air-free water from 0 °C to 100 °C at a ...
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
Here is the Bohr magneton and is the nuclear magneton. This last approximation is justified because μ N {\displaystyle \mu _{N}} is smaller than μ B {\displaystyle \mu _{B}} by the ratio of the electron mass to the proton mass.
where N is the Avogadro constant, g is the Landé g-factor, and μ B is the Bohr magneton. In this treatment it has been assumed that the electronic ground state is not degenerate, that the magnetic susceptibility is due only to electron spin and that only the ground state is thermally populated.
The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.