Search results
Results From The WOW.Com Content Network
The computer may also offer facilities for splitting a product into a digit and carry without requiring the two operations of mod and div as in the example, and nearly all arithmetic units provide a carry flag which can be exploited in multiple-precision addition and subtraction. This sort of detail is the grist of machine-code programmers, and ...
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Fractional numbers are supported on most programming languages as floating-point numbers or fixed-point numbers. However, such representations typically restrict the denominator to a power of two. Most decimal fractions (or most fractions in general) cannot be represented exactly as a fraction with a denominator that is a power of two.
x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1. The algorithm performs a fixed sequence of operations (up to log n): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value. A similar algorithm for ...
For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
The exponents 000 16 and 7ff 16 have a special meaning: 00000000000 2 =000 16 is used to represent a signed zero (if F = 0) and subnormal numbers (if F ≠ 0); and; 11111111111 2 =7ff 16 is used to represent ∞ (if F = 0) and NaNs (if F ≠ 0), where F is the fractional part of the significand. All bit patterns are valid encoding.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.