When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    Injective composition: the second function need not be injective. A function is injective (one-to-one) if each possible element of the codomain is mapped to by at most one argument. Equivalently, a function is injective if it maps distinct arguments to distinct images. An injective function is an injection. [1] The formal definition is the ...

  3. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    Functions which satisfy property (4) are said to be "one-to-one functions" and are called injections (or injective functions). [2] With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto". [3]

  4. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The function f is bijective (or is a bijection or a one-to-one correspondence) if it is both injective and surjective. [17] [21] That is, f is bijective if, for every , the preimage () contains exactly one element.

  5. List of types of functions - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_functions

    Bijective function: is both an injection and a surjection, and thus invertible. Identity function: maps any given element to itself. Constant function: has a fixed value regardless of its input. Empty function: whose domain equals the empty set. Set function: whose input is a set.

  6. Horizontal line test - Wikipedia

    en.wikipedia.org/wiki/Horizontal_line_test

    Variations of the horizontal line test can be used to determine whether a function is surjective or bijective: The function f is surjective (i.e., onto) if and only if its graph intersects any horizontal line at least once. f is bijective if and only if any horizontal line will intersect the graph exactly once.

  7. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).

  8. Identity function - Wikipedia

    en.wikipedia.org/wiki/Identity_function

    In other words, the function value f(x) in the codomain X is always the same as the input element x in the domain X.The identity function on X is clearly an injective function as well as a surjective function (its codomain is also its range), so it is bijective.

  9. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    The composition of one-to-one (injective) functions is always one-to-one. Similarly, the composition of onto (surjective) functions is always onto. It follows that the composition of two bijections is also a bijection. The inverse function of a composition (assumed invertible) has the property that (f ∘ g) −1 = g −1 ∘ f −1.