Search results
Results From The WOW.Com Content Network
The following exergonic equilibrium gives rise to the triiodide ion: . I 2 + I − ⇌ I − 3. In this reaction, iodide is viewed as a Lewis base, and the iodine is a Lewis acid.The process is analogous to the reaction of S 8 with sodium sulfide (which forms polysulfides) except that the higher polyiodides have branched structures.
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. polyatomic ions like NH + 4 or SO 2− 4. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms.
The inductive effect is the transmission of charge through covalent bonds and Bent's rule provides a mechanism for such results via differences in hybridisation. In the table below, [ 26 ] as the groups bonded to the central carbon become more electronegative, the central carbon becomes more electron-withdrawing as measured by the polar ...
Monochloroacetic acid (pK a =2.82), though, is stronger than formic acid, due to the electron-withdrawing effect of chlorine promoting ionization. In benzoic acid, the carbon atoms which are present in the ring are sp 2 hybridised. As a result, benzoic acid (pK a =4.20) is a stronger acid than cyclohexanecarboxylic acid (pK a =4.87).
This exercise generates the diagram at right (Figure 1). Three molecular orbitals result from the combination of the three relevant atomic orbitals, with the four electrons occupying the two MOs lowest in energy – a bonding MO delocalized across all three centers, and a non-bonding MO localized on the peripheral centers.
The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber , who developed it in 1919. [ 1 ] [ 2 ] [ 3 ] It was also independently formulated by Kazimierz Fajans [ 4 ] and published concurrently in the same journal. [ 1 ]
In chemistry, azide (/ ˈ eɪ z aɪ d /, AY-zyd) is a linear, polyatomic anion with the formula N − 3 and structure − N=N + =N −.It is the conjugate base of hydrazoic acid HN 3. Organic azides are organic compounds with the formula RN 3, containing the azide functional group. [1]