Search results
Results From The WOW.Com Content Network
Survey methodology textbooks generally consider simple random sampling without replacement as the benchmark to compute the relative efficiency of other sampling approaches. [ 3 ] An unbiased random selection of individuals is important so that if many samples were drawn, the average sample would accurately represent the population.
Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items. The size of the population n is not known to the algorithm and is typically too large for all n items to fit into main memory .
Latin hypercube sampling (LHS) is a statistical method for generating a near-random sample of parameter values from a multidimensional distribution. The sampling method is often used to construct computer experiments or for Monte Carlo integration. [1] LHS was described by Michael McKay of Los Alamos National Laboratory in 1979. [1]
The Metropolis-Hastings algorithm sampling a normal one-dimensional posterior probability distribution.. In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult.
Lot quality assurance sampling (LQAS) is a random sampling methodology, originally developed in the 1920s [1] as a method of quality control in industrial production. Compared to similar sampling techniques like stratified and cluster sampling , LQAS provides less information but often requires substantially smaller sample sizes.
Given a random point underneath a probability density curve, its x coordinate is a random number with the desired distribution. The distribution the ziggurat algorithm chooses from is made up of n equal-area regions; n − 1 rectangles that cover the bulk of the desired distribution, on top of a non-rectangular base that includes the tail of ...
In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population.
The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with expectancy of n). When selecting items with replacement the selection procedure is to just draw one item at a time (like getting n draws from a multinomial distribution with N elements, each with their own ...