Search results
Results From The WOW.Com Content Network
Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1] When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule.
The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. [2] Its name is derived from the Greek words χλωρός (khloros, "pale green") and φύλλον (phyllon, "leaf"). [3] Chlorophyll allows plants to absorb energy from light.
For example, in green plants, the action spectrum resembles the absorption spectrum for chlorophylls and carotenoids with absorption peaks in violet-blue and red light. In red algae , the action spectrum is blue-green light, which allows these algae to use the blue end of the spectrum to grow in the deeper waters that filter out the longer ...
Light-dependent reactions of photosynthesis at the thylakoid membrane. Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons.
Two examples of carotenoids are lycopene and β-carotene. These molecules also absorb light most efficiently in the 400 – 500 nm range. Due to their absorption region, carotenoids appear red and yellow and provide most of the red and yellow colours present in fruits and flowers. The carotenoid molecules also serve a safeguarding function.
Chlorophyll a is the most common of the six, present in every plant that performs photosynthesis. Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum. Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm. Xanthophyll absorbs ...