When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ordered pair - Wikipedia

    en.wikipedia.org/wiki/Ordered_pair

    Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered n-tuples (ordered lists of n objects).

  3. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    In the theory of vector spaces, a set of vectors is said to be linearly independent if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be linearly dependent. These concepts are central to the definition of dimension. [1]

  4. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    is the linear combination of vectors and such that = +. In mathematics, a linear combination or superposition is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants).

  5. Glossary of linear algebra - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_linear_algebra

    This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory

  6. Pregeometry (model theory) - Wikipedia

    en.wikipedia.org/wiki/Pregeometry_(model_theory)

    The linear algebra concepts of independent ... is a pair (,) , where is a set and : () ... are parallel lines then the formula in the definition of modularity fails ...

  7. Linearity - Wikipedia

    en.wikipedia.org/wiki/Linearity

    In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.

  8. Linear function - Wikipedia

    en.wikipedia.org/wiki/Linear_function

    A constant function is also considered linear in this context, as it is a polynomial of degree zero or is the zero polynomial. Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form.

  9. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    The coefficients of this linear combination are referred to as components or coordinates of the vector with respect to B. The elements of a basis are called basis vectors. Equivalently, a set B is a basis if its elements are linearly independent and every element of V is a linear combination of elements of B. [1]