Search results
Results From The WOW.Com Content Network
Furthermore, if the Jacobian determinant at p is positive, then f preserves orientation near p; if it is negative, f reverses orientation. The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p ; this is why it occurs in the general substitution rule .
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
Given a sample of 12 individuals, 8 that have been diagnosed with cancer and 4 that are cancer-free, where individuals with cancer belong to class 1 (positive) and non-cancer individuals belong to class 0 (negative), we can display that data as follows:
In mathematics, the Jacobian conjecture is a famous unsolved problem concerning polynomials in several variables. It states that if a polynomial function from an n -dimensional space to itself has Jacobian determinant which is a non-zero constant, then the function has a polynomial inverse.
That is, the Jacobian of a composite function is the product of the Jacobians of the composed functions (evaluated at the appropriate points). The higher-dimensional chain rule is a generalization of the one-dimensional chain rule. If k, m, and n are 1, so that f : R → R and g : R → R, then the Jacobian matrices of f and g are 1 × 1.
There is an analogous criterion for a continuously differentiable map f: R n → R n with a fixed point a, expressed in terms of its Jacobian matrix at a, J a (f). If all eigenvalues of J are real or complex numbers with absolute value strictly less than 1 then a is a stable fixed point; if at least one of them has absolute value strictly ...
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...