Search results
Results From The WOW.Com Content Network
Such reactions are said to be anti-Markovnikov, since the halogen adds to the less substituted carbon, the opposite of a Markovnikov reaction. The anti-Markovnikov rule can be illustrated using the addition of hydrogen bromide to isobutylene in the presence of benzoyl peroxide or hydrogen peroxide.
The reaction is considered Markovnikov as it results in water addition with same regiospecificity as a direct hydration reaction. Alkene hydroboration-oxidation: Stereospecific: Can only be syn addition – hydrogen and hydroxyl (-OH) are added to the same face. The reaction is anti-Markovnikov. Hydroxyl attaches to the less substituted carbon.
The reaction follows Markovnikov's rule (the hydroxy group will always be added to the more substituted carbon). The oxymercuration part of the reaction involves anti addition of OH group but the demercuration part of the reaction involves free radical mechanism and is not stereospecific, i.e. H and OH may be syn or anti to each other. [2] [3] [4]
By reaction with tertiary amines, long-chain alkyl bromides such as 1-bromododecane, give quaternary ammonium salts, which are used as phase transfer catalysts. [9] With Michael acceptors the addition is also anti-Markovnikov because now a nucleophilic X − reacts in a nucleophilic conjugate addition for example in the reaction of HCl with ...
Markovnikov is best known for Markovnikov's rule, elucidated in 1869 to describe addition reactions of H-X (where 'X' represents a halogen) to alkenes.According to this rule, the nucleophilic X- binds to the carbon (C) atom with fewer hydrogen atoms, while the proton binds to the carbon atom with more hydrogen atoms bonded to it.
Hydrosilylation of alkenes usually proceeds via anti-Markovnikov addition, i.e., silicon is placed at the terminal carbon when hydrosilylating a terminal alkene; [1] however, in the recent years, Markovnikov addition has become a growing field of research. [4]
Reaction of this radical with another HBr molecule would cause the abstraction of another H atom and would complete the anti-Markovnikov addition. Since the Br radical is regenerated, the reaction would continue to proceed at a fairly quick pace until the reactants were exhausted and/or the radical species were terminated. [1]
Regioselectivity issues also hamper the synthetic utility of the resulting products, with Markovnikov addition of the amine being the most common outcome over the less favoured anti-Markovnikov addition (see figure). As a result, there are now numerous catalysts that can be utilised in the hydroamination of alkene, allene and alkyne substrates ...