Ad
related to: boundary value problem examples
Search results
Results From The WOW.Com Content Network
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
In mathematics, some boundary value problems can be solved using the methods of stochastic analysis.Perhaps the most celebrated example is Shizuo Kakutani's 1944 solution of the Dirichlet problem for the Laplace operator using Brownian motion.
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools.
The boundary value problem solver's performance suffers from this. Even stable and well-conditioned ODEs may make for unstable and ill-conditioned BVPs. A slight alteration of the initial value guess y 0 may generate an extremely large step in the ODEs solution y(t b; t a, y 0) and thus in the values of the function F whose root is sought. Non ...
Precisely, in a mixed boundary value problem, the solution is required to satisfy a Dirichlet or a Neumann boundary condition in a mutually exclusive way on disjoint parts of the boundary. For example, given a solution u to a partial differential equation on a domain Ω with boundary ∂Ω , it is said to satisfy a mixed boundary condition if ...
Two numerical solutions of the nonlinear example boundary value problem ″ =, () = =. Solved by a spectral Chebyshev method and quasilinearization. The top curve used 21 interpolation nodes, and the bottom curve used 34. Both used 3 iterations.
In mathematics, an elliptic boundary value problem is a special kind of boundary value problem which can be thought of as the steady state of an evolution problem. For example, the Dirichlet problem for the Laplacian gives the eventual distribution of heat in a room several hours after the heating is turned on.