When.com Web Search

  1. Ad

    related to: second countable space is separable youtube tv episodes

Search results

  1. Results From The WOW.Com Content Network
  2. Second-countable space - Wikipedia

    en.wikipedia.org/wiki/Second-countable_space

    In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base.More explicitly, a topological space is second-countable if there exists some countable collection = {} = of open subsets of such that any open subset of can be written as a union of elements of some subfamily of .

  3. Separable space - Wikipedia

    en.wikipedia.org/wiki/Separable_space

    Any second-countable space is separable: if {} is a countable base, choosing any from the non-empty gives a countable dense subset. Conversely, a metrizable space is separable if and only if it is second countable, which is the case if and only if it is Lindelöf.

  4. Axiom of countability - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_countability

    sequential space: a set is closed if and only if every convergent sequence in the set has its limit point in the set; first-countable space: every point has a countable neighbourhood basis (local base) second-countable space: the topology has a countable base; separable space: there exists a countable dense subset

  5. General topology - Wikipedia

    en.wikipedia.org/wiki/General_topology

    Lindelöf space: every open cover has a countable subcover; σ-compact space: there exists a countable cover by compact spaces; Relations: Every first countable space is sequential. Every second-countable space is first-countable, separable, and Lindelöf. Every σ-compact space is Lindelöf. A metric space is first-countable. For metric spaces ...

  6. Topological property - Wikipedia

    en.wikipedia.org/wiki/Topological_property

    A space is first-countable if every point has a countable local base. Second-countable. A space is second-countable if it has a countable base for its topology. Second-countable spaces are always separable, first-countable and Lindelöf. Lindelöf. A space is Lindelöf if every open cover has a countable subcover. σ-compact. A space is σ ...

  7. Polish space - Wikipedia

    en.wikipedia.org/wiki/Polish_space

    Every Polish space is second countable (by virtue of being separable and metrizable). [1]A subspace Q of a Polish space P is Polish (under the induced topology) if and only if Q is the intersection of a sequence of open subsets of P (i. e., Q is a G δ-set).

  8. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    However, the converse is nearly true: a paracompact manifold is second-countable if and only if it has a countable number of connected components. In particular, a connected manifold is paracompact if and only if it is second-countable. Every second-countable manifold is separable and paracompact. Moreover, if a manifold is separable and ...

  9. Particular point topology - Wikipedia

    en.wikipedia.org/wiki/Particular_point_topology

    {p} is dense and hence X is a separable space. However if X is uncountable then X \ {p} is not separable. This is an example of a subspace of a separable space not being separable. Countability (first but not second) If X is uncountable then X is first countable but not second countable. Alexandrov-discrete The topology is an Alexandrov topology.