Ads
related to: purple math factor theorem examples pdf problems worksheets
Search results
Results From The WOW.Com Content Network
The theorem is a special case of the polynomial remainder theorem. [1] [2] The theorem results from basic properties of addition and multiplication. It follows that the theorem holds also when the coefficients and the element belong to any commutative ring, and not just a field.
Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics) Noether's theorem on rationality for surfaces (algebraic surfaces) Non-squeezing theorem (symplectic geometry) Norton's theorem (electrical networks) Novikov's compact leaf theorem
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.
In mathematics, Sophie Germain's identity is a polynomial factorization named after Sophie Germain stating that + = ((+) +) (() +) = (+ +) (+). Beyond its use in elementary algebra, it can also be used in number theory to factorize integers of the special form +, and it frequently forms the basis of problems in mathematics competitions.
Euler's factorization method is a technique for factoring a number by writing it as a sum of two squares in two different ways. For example the number can be written as + or as + and Euler's method gives the factorization =.
The theorem may be viewed as an extension of the fundamental theorem of algebra, which asserts that every polynomial may be factored into linear factors, one for each root. It is closely related to Weierstrass factorization theorem , which does not restrict to entire functions with finite orders.