Ads
related to: purple math factor theorem examples pdf problems printablestudy.com has been visited by 100K+ users in the past month
generationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
In mathematics, Sophie Germain's identity is a polynomial factorization named after Sophie Germain stating that + = ((+) +) (() +) = (+ +) (+). Beyond its use in elementary algebra, it can also be used in number theory to factorize integers of the special form +, and it frequently forms the basis of problems in mathematics competitions.
The theorem is a special case of the polynomial remainder theorem. [1] [2] The theorem results from basic properties of addition and multiplication. It follows that the theorem holds also when the coefficients and the element belong to any commutative ring, and not just a field.
This is a list of notable theorems.Lists of theorems and similar statements include: List of algebras; List of algorithms; List of axioms; List of conjectures
Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...
Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.
A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors.