When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4) .

  4. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  5. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    A natural number is a sociable factorion if it is a periodic point for , where ⁡ = for a positive integer, and forms a cycle of period . A factorion is a sociable factorion with k = 1 {\displaystyle k=1} , and a amicable factorion is a sociable factorion with k = 2 {\displaystyle k=2} .

  6. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...

  7. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    An alternative version uses the fact that the Poisson distribution converges to a normal distribution by the Central Limit Theorem. [5]Since the Poisson distribution with parameter converges to a normal distribution with mean and variance , their density functions will be approximately the same:

  8. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    The problem that we are trying to solve is: given an odd composite number, find its integer factors. To achieve this, Shor's algorithm consists of two parts: A classical reduction of the factoring problem to the problem of order-finding.

  9. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation