Search results
Results From The WOW.Com Content Network
The divergence of a vector field which is the resultant of radial inverse-square law fields with respect to one or more sources is proportional to the strength of the local sources, and hence zero outside sources. Newton's law of universal gravitation follows an inverse-square law, as do the effects of electric, light, sound, and radiation ...
Newton would need an accurate measure of this constant to prove his inverse-square law. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him, ultimately a frivolous accusation. [8]: 204
Two types of central forces—those that increase linearly with distance, F = Cr, such as Hooke's law, and inverse-square forces, F = C/r 2, such as Newton's law of universal gravitation and Coulomb's law—have a very unusual property. A particle moving under either type of force always returns to its starting place with its initial velocity ...
In Newton's law, it is the proportionality constant connecting the gravitational force between two bodies with the product of their masses and the inverse square of their distance. In the Einstein field equations , it quantifies the relation between the geometry of spacetime and the energy–momentum tensor (also referred to as the stress ...
So the inverse square law for planetary accelerations applies throughout the entire Solar System. The inverse square law is a differential equation. The solutions to this differential equation include the Keplerian motions, as shown, but they also include motions where the orbit is a hyperbola or parabola or a straight line. (See Kepler orbit.)
After these explanations were discounted, some physicists were driven to the more radical hypothesis that Newton's inverse-square law of gravitation was incorrect. For example, some physicists proposed a power law with an exponent that was slightly different from 2.
Newton's tract De motu corporum in gyrum, which he sent to Halley in late 1684, derived what is now known as the three laws of Kepler, assuming an inverse square law of force, and generalised the result to conic sections. It also extended the methodology by adding the solution of a problem on the motion of a body through a resisting medium.
Solving the equation for r(t) is the key to the two-body problem. The solution depends on the specific force between the bodies, which is defined by (). For the case where () follows an inverse-square law, see the Kepler problem.