When.com Web Search

  1. Ads

    related to: multinomial logistic regression examples pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model. [4]

  3. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    This simple model is an example of binary logistic regression, and has one explanatory variable and a binary categorical variable which can assume one of two categorical values. Multinomial logistic regression is the generalization of binary logistic regression to include any number of explanatory variables and any number of categories.

  4. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.

  5. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  6. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, peach, orange, or an ...

  7. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    The resulting model is known as logistic regression (or multinomial logistic regression in the case that K-way rather than binary values are being predicted). For the Bernoulli and binomial distributions, the parameter is a single probability, indicating the likelihood of occurrence of a single event.

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    Specifically, in multinomial logistic regression and linear discriminant analysis, the input to the function is the result of K distinct linear functions, and the predicted probability for the j th class given a sample vector x and a weighting vector w is:

  9. Discrete choice - Wikipedia

    en.wikipedia.org/wiki/Discrete_choice

    Logit models can be estimated by logistic regression, and probit models can be estimated by probit regression. Nonparametric methods, such as the maximum score estimator , have been proposed. [ 28 ] [ 29 ] Estimation of such models is usually done via parametric, semi-parametric and non-parametric maximum likelihood methods, [ 30 ] but can also ...