Search results
Results From The WOW.Com Content Network
[1] The coefficient of multiple correlation takes values between 0 and 1. Higher values indicate higher predictability of the dependent variable from the independent variables , with a value of 1 indicating that the predictions are exactly correct and a value of 0 indicating that no linear combination of the independent variables is a better ...
L1-norm principal component analysis (L1-PCA) is a general method for multivariate data analysis. [1] L1-PCA is often preferred over standard L2-norm principal component analysis (PCA) when the analyzed data may contain outliers (faulty values or corruptions), as it is believed to be robust .
Stata allows for flexibility with assigning data types to data. Its compress command automatically reassigns data to data types that take up less memory without loss of information. Stata utilizes integer storage types which occupy only one or two bytes rather than four, and single-precision (4 bytes) rather than double-precision (8 bytes) is ...
[Note 1] Descriptive statistics Nonparametric statistics Quality control Survival analysis Data processing Base stat. [Note 2] Normality tests [Note 3] CTA [Note 4] Nonparametric comparison, ANOVA: Cluster analysis Discriminant analysis BDP [Note 5] Ext. [Note 6]
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
In statistics, multiple correspondence analysis (MCA) is a data analysis technique for nominal categorical data, used to detect and represent underlying structures in a data set. It does this by representing data as points in a low-dimensional Euclidean space .
2 Binomial data. 3 2 × 2 ... This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale ...
The data include quantitative variables =, …, and qualitative variables =, …,.. is a quantitative variable. We note: . (,) the correlation coefficient between variables and ;; (,) the squared correlation ratio between variables and .; In the PCA of , we look for the function on (a function on assigns a value to each individual, it is the case for initial variables and principal components ...