Ads
related to: isosceles triangle answer key word search generator commercial use free
Search results
Results From The WOW.Com Content Network
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
Since OA = OB = OC, OBA and OBC are isosceles triangles, and by the equality of the base angles of an isosceles triangle, ∠ OBC = ∠ OCB and ∠ OBA = ∠ OAB. Let α = ∠ BAO and β = ∠ OBC. The three internal angles of the ∆ABC triangle are α, (α + β), and β. Since the sum of the angles of a triangle is equal to 180°, we have
Let ABC be any triangle. Let P 1 Q 1, P 2 Q 2, P 3 Q 3 be the isoscelizers of the angles A, B, C respectively such that they all have the same length. Then, for a unique configuration, the three isoscelizers P 1 Q 1, P 2 Q 2, P 3 Q 3 are concurrent. The point of concurrence is the congruent isoscelizers point of triangle ABC. [1]
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The unique 6-point isosceles set in the plane. The shaded regions show four of the 20 isosceles triangles formed by triples of these points. In discrete geometry, an isosceles set is a set of points with the property that every three of them form an isosceles triangle.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);