Search results
Results From The WOW.Com Content Network
Angles involved in a thin gravitational lens system. As shown in the diagram on the right, the difference between the unlensed angular position and the observed position is this deflection angle, reduced by a ratio of distances, described as the lens equation
For a single lens surrounded by a medium of refractive index n = 1, the locations of the principal points H and H ′ with respect to the respective lens vertices are given by the formulas = ′ = (), where f is the focal length of the lens, d is its thickness, and r 1 and r 2 are the radii of curvature of its surfaces. Positive signs indicate ...
The above equations also hold for thick lenses (including a compound lens made by multiple lenses, that can be treated as a thick lens) in air or vacuum (which refractive index can be treated as 1) if , , and are with respect to the principal planes of the lens (is the effective focal length in this case). [23]
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
For a source right behind the lens, θ S = 0, the lens equation for a point mass gives a characteristic value for θ 1 that is called the Einstein angle, denoted θ E. When θ E is expressed in radians, and the lensing source is sufficiently far away, the Einstein Radius, denoted R E, is given by =. [2]
In microscopy, NA is important because it indicates the resolving power of a lens. The size of the finest detail that can be resolved (the resolution) is proportional to λ / 2NA , where λ is the wavelength of the light. A lens with a larger numerical aperture will be able to visualize finer details than a lens with a smaller numerical ...
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.