Search results
Results From The WOW.Com Content Network
The FOIL algorithm is as follows: Input List of examples and predicate to be learned Output A set of first-order Horn clauses FOIL(Pred, Pos, Neg) Let Pos be the positive examples Let Pred be the predicate to be learned Until Pos is empty do: Let Neg be the negative examples Set Body to empty Call LearnClauseBody Add Pred ← Body to the rule
Covering algorithms, in general, can be applied to any machine learning application field, as long as it supports its data type. Witten, Frank and Hall [20] identified six main fielded applications that are actively used as ML applications, including sales and marketing, judgment decisions, image screening, load forecasting, diagnosis, and web ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [1]: 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
The CN2 induction algorithm is a learning algorithm for rule induction. [1] It is designed to work even when the training data is imperfect. It is based on ideas from the AQ algorithm and the ID3 algorithm. As a consequence it creates a rule set like that created by AQ but is able to handle noisy data like ID3.
C5.0, which Quinlan is commercially selling (single-threaded version is distributed under the terms of the GNU General Public License), is an improvement on C4.5.The advantages are speed (several orders of magnitude faster), memory efficiency, smaller decision trees, boosting (more accuracy), ability to weight different attributes, and winnowing (reducing noise).
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.
The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.