Search results
Results From The WOW.Com Content Network
A tabular data card proposed for Babbage's Analytical Engine showing a key–value pair, in this instance a number and its base-ten logarithm. A key–value database, or key–value store, is a data storage paradigm designed for storing, retrieving, and managing associative arrays, and a data structure more commonly known today as a dictionary or hash table.
However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values. For example, if s is a Series, s['a'] will return the data point at index a. Unlike dictionary keys, index values are ...
Mondrian – data analysis tool using interactive statistical graphics with a link to R; Neurophysiological Biomarker Toolbox – Matlab toolbox for data-mining of neurophysiological biomarkers; OpenBUGS; OpenEpi – A web-based, open-source, operating-independent series of programs for use in epidemiology and statistics based on JavaScript and ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
For example, the key may be a geographic position (latitude and longitude) on the Earth. In that case, common kinds of queries are "find the record with a key closest to a given point v ", or "find all items whose key lies at a given distance from v ", or "find all items within a specified region R of the space".
The base data and the dimension tables are stored as relational tables and new tables are created to hold the aggregated information. It depends on a specialized schema design. This methodology relies on manipulating the data stored in the relational database to give the appearance of traditional OLAP's slicing and dicing functionality.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...