Search results
Results From The WOW.Com Content Network
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
The spectral interpretation of the filtering operation is essential to the filtering operation in large eddy simulation, as the spectra of turbulent flows is central to LES subgrid-scale models, which reconstruct the effect of the sub-filter scales (the highest frequencies). One of the challenges in subgrid modeling is to effectively mimic the ...
In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...
In some cases, the system may not have a fixed natural length or time scale, while the solution depends on space or time. It is then necessary to construct a scale using space or time and the other dimensional quantities present—such as the viscosity . These constructs are not 'guessed' but are derived immediately from the scaling of the ...
The exact k-ε equations contain many unknown and unmeasurable terms. For a much more practical approach, the standard k-ε turbulence model (Launder and Spalding, 1974 [3]) is used which is based on our best understanding of the relevant processes, thus minimizing unknowns and presenting a set of equations which can be applied to a large number of turbulent applications.
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
The Exner equation describes conservation of mass between sediment in the bed of a channel and sediment that is being transported. [1] It states that bed elevation increases (the bed aggrades) proportionally to the amount of sediment that drops out of transport, and conversely decreases (the bed degrades) proportionally to the amount of sediment that becomes entrained by the flow.
where is gravity, is density, is a representative flow speed, and is depth. The Richardson number, or one of several variants, is of practical importance in weather forecasting and in investigating density and turbidity currents in oceans, lakes, and reservoirs.