Search results
Results From The WOW.Com Content Network
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
In electrochemistry, the Butler–Volmer equation (named after John Alfred Valentine Butler [1] and Max Volmer), also known as Erdey-Grúz–Volmer equation, is one of the most fundamental relationships in electrochemical kinetics.
Tafel plot for an anodic process (). The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. [1] The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification.
In electrochemistry, exchange current density is a parameter used in the Tafel equation, Butler–Volmer equation and other electrochemical kinetics expressions. The Tafel equation describes the dependence of current for an electrolytic process to overpotential.
In operating batteries and fuel cells, charge transfer coefficient is the parameter that signifies the fraction of overpotential that affects the current density.This parameter has had a mysterious significance in electrochemical kinetics for over three quarters of the previous century [citation needed].
An electrochemical reaction is a combination of two half-cells and multiple elementary steps. Each step is associated with multiple forms of overpotential. The overall overpotential is the summation of many individual losses. Voltage efficiency describes the fraction of energy lost through overpotential.
In electrochemistry, the Randles–ŠevĨík equation describes the effect of scan rate on the peak current (i p) for a cyclic voltammetry experiment. For simple redox events where the reaction is electrochemically reversible, and the products and reactants are both soluble, such as the ferrocene/ferrocenium couple, i p depends not only on the concentration and diffusional properties of the ...
Electrochemical engineering considers current distribution, fluid flow, mass transfer, and the kinetics of the electro reactions to design efficient electrochemical reactors. [ 2 ] Most electrochemical operations are performed in filter-press reactors with parallel plate electrodes or, less often, in stirred tanks with rotating cylinder electrodes.